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EXTRUSION RHEODYNAMICS FOR A VISCOUS COMPRESSIBLE MATERIAL 

L. S. Stel'makh, A. Mo Stolin, and B. M. Khusid UDC 532.135 

An analytic solution is derived for the consolidation and flow of a viscous 
compressible material used in plunger extrusion, which enables one to determine 
the density, velocity, and stress patterns in the specimen and in the rod. 

Components are increasingly prepared from refractory powders by plunger extrusion, in 
which the material is extruded from a press mold through a die. 

Good models exist for such extrusion for incompressible plastic and viscous materials 
[1-5] such as most polymer and metal systems~ However, those models are sometimes inapplic- 
able for refractory compressible powder composites. Such a material behaves as a viscous 
or viscoplastic body only over 1000~ so external heating is used (hot extrusion [7, 8])~ 
The latter method can give components from powders that do not press well. The rheological 
behavior and the combination of deformation and consolidation mean that such systems must 
be considered separately. The features are reflected in consolidation theory for a viscous 
compressible material, which can be based on a rheological approach [9, i0]. Numerous papers 
deal with axial compression for a viscous porous material [ii-14]~ Here we consider the 
extrusion of a viscous compressible material from a chamber via a slot. The model and the 
method are used with Lagrangian coordinates to obtain an analytic solution for the density 
and velocity distributions in the chamber and in the rod. 

Model and Main Assumptions~ We consider the flow of a viscous porous material from 
a cylindrical chamber bounded above by a moving piston. The initial length of the material 
is H0, and the radius of the cross section is r 0. At the bottom of the chamber there is a 
circular hole with radius r I through which the material is extruded into a cylindrical guide 
of the same radius. The symmetry axis is taken as the z axis, whose positive direction is 
opposite to that of the piston motion. The origin z = 0 lies at the center of the exit cross 
section from the chamber. We neglect the friction on the walls of the chamber and guide 
cylinder and affects from bulk forces. 

The flow region is divided into two parts: within the chamber between the piston at 
z = H(t) and the exit section z = 0+ and that within the guide between z = 0_ and the free 
surface z = L(t). The subscripts + and - indicate correspondingly that the z = 0 section 
relates either to the chamber or to the guide. We neglect perturbations in the two parts 
of the flow on passage from the chamber to the hole. The motion in each region is taken 
as steady-state and one-dimensional with one nonzero velocity component v z = v # 0. If the 
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viscosity Di of the incompressible matrix in the powder composite is sufficiently large 
(Di > 10a Pa-sec), the flow rearrangement time near the exit hole with radius r i (~Piri2pi -i) 
in a real extrusion is small by comparison with the characteristic extrusion time (~H01VI-i), 
and that assumption is justified. Usually, the extrusion is performed in a conical hous- 
ing, which is not incorporated here. That assumption applies if the conical part is rela- 
tively short, l ~ H 0. 

In a one-dimensional approach, the motion in the conical housing is characterized by 
two parameters: the relative density change and the hydraulic resistance, which is depen- 
dent on the applied force: 

p (o_, t) _ B (l~t~=ol), 
p (o+, t) 

-- Slp tp  (0_, t) v (0_, I) = f (F~=I~=o[). 

The shape of the housing and the rheological parameters govern B and f. We subsequently 
assume that B = i, i.e., there is no ongoing consolidation in the housing, which is an 
acceptable approximation if the main consolidation occurs within the chamber. The f(lozzl ) 
dependence for simplicity is taken as a power law: f = klozzl n, where the parameters k and 
n may be derived from experiment. 

The flow is described by the equations of motion and continuity together with the rheo- 
logical formula, which can be put as [11-14] 

Op O (pv)=O,  O~z _ 0 ,  
%T + 0-7, o~ 

( 1 )  

, - ~ - z  ~ r r - ~ O :  - - ~ - - ~ + ~  
' Oz 

The boundary and initial conditions are 

~z~12=mt) = - -  P,  c%~12=o = O, 

P It:e = Po (z)- 

The unknowns here are the relative density p and the velocity v, which are functions only 
of z and time t, while the shear viscosity p and the bulk viscosity g have the following 
density dependence : 

(p) : ~Hp m, ~ (p) = ,tt (p) 1 -- 9 

Mass-Balance Equations. Let M i and M 2 be the masses of material in the chamber and 
guide correspondingly, and then the total mass M 0 between the piston z = H(t) and the free 
surface z = -L(t) should be constant: 

M(O o _ 

340 - m~ 4-  m~ = Sop~ .[ p (z, t) dz + S~pi t" pctz - cons+.. 
o+ -k(t) 

(2) 

We use the initial conditions and the fact that H(0) = H 0, L(0) = 0 to get M 0 = 

S0Pi~~ We check whether (2) can be met. We calculate 8M0/St as the derivative 
0 

with variable upper limit and use (I) to show that 

OMo _ OMt 4- OM~ _Soplp(O+, t) v(O+, t ) - - S l p ~ p ( O _ ,  t) v(O_, O. 
Ot Ot Ot 

T h e r e  i s  no  d e n s i t y  d i s c o n t i n u i t y  on  p a s s a g e  t h r o u g h  z = O, s o  9 ( 0 + ,  t )  = 9 ( 0 - ,  t )  = p (O ,  t ) .  
By virtue of the continuity, the amount of material leaving the chamber and the amount entering 
the guide are the same: 

Somp(O, t)v(O+, t)=S~mp(O, t)v(O_, i), 

so 8M0/St = 0 and (2) is met. The density assumption means that the change in cross-sectional 
area affects only~the velocity, as for an incompressible liquid, and 
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S 1 ~(0+, 0 =: ~:,(0_,  O. (3) 

From ( 1 ) ,  t h e  l o n g i t u d i n a l  f o r c e  d o e s  n o t  v a r y  a l o n g  t h e  c h a m b e r ,  s o  Ozz = - P ,  and  t h e  
hole resistance law is 

riM2 
- -  $1~o1~) (0,  ~) ro (0_,  ~) := ~SI..D"e. (4) 

dt 

A similar approach is used in extrusion head theory [i]. From (3) and (4) we have 

v (0_, t) hP . . . . .  - -  , v ( < ,  ~) S~,~P ( 5 )  
PiP (0, t) Scp,p (0, *) ' 

The density p(0, t) appears in (5) for the extrusion rate, and this has to be determined. 
We consider the consolidation in the chamber. 

Lagrangian Coordinate System. We use Lagrangian coordinates: time tL, which is taken 
as equal to the time t (with tne subscript L subsequently omitted) and the mass coordinate 
q = M/S0Pl, which is the relative mass of material between the variable section z and the 
free surface z = -L(t): 

0 
We put M2(t) = S i p  1 f 

--k(O 

q - z ~1 '% 
M - i ' p ( z ,  t) d z - ~ - -  i p(z, Ojz. 

Sop~ b So -i<,~ 

pdz as the mass of material in the guide at time t. Then the rela- 

tive total mass is governed by the coordinate q0: 

~l u> Mo (0 
% = i' P (z, ~) dz k - - = - -  

Sopr 

The ( 4 )  r e s i s t a n c e  l aw  g i v e s  

z /IiO 

q : = f p f z  t) dz- t  >t, % = i" p(z' Odz <-B. (6) 
o 6 

Figure i shows the piston coordinates, the free surface, and the hole at the initial 
and current instants in terms of the z and q axes. The q ranges for the individual volumes 

in the chamber q e [Pt, q0], have constant upper limit q0 and time-varying lower limit Pt. 

That limit moves to the right with velocity P. We consider any individual volume with co- 
ordinate q, which passes through the hole at time 

t = q/P. ( 7 )  

The total extrusion time is: t e = q0/P. The mass-coordinate range in the guide is 

q E [0, Pt]. The length of this increases with time, so if we are interested in the charac- 
teristics of volumes passing through the hole at z = 0, one should use the q-t relation from 
(7), in which these quantities are not independent variables. 

I 
/ 

I 
I 

-L (t) 

0 Pt fo 
A .f { 

/ r  . . - ' /  ~ I; 
/ t / / / I 

/ / lY, o !L / Z 
0 / I t=O 

/ b 
/ I 

0 t z 

Fig. i. Position of the Pt boundary on the q-axis as a func- 
tion of time and corresponding positions of the'-L(t) and 
H(t) boundaries on the z-axis: a) at t = 0; b) at the current 
instant (t). 

1013 



Formulation of Lazrangian Coordinates. In these, (i) becomes 

0_~p 
+ p~VV = 0, 

Ot Oq 

Oqz~ ~ O, 
3q 

4 p~+l O0 

To s o l v e  t h i s ,  one n e e d s  t o  know t h e  i n i t i a l  d e n s i t y  d i s t r i b u t i o n  i n  q: 

p(q, 0)=p0(q) 

and the boundary conditions. At z = H(t), with the force on the piston defined, 

(8) 

(9) 

(10) 

and at the lower boundary 

(ii) 

G=]q=qo =--P, (12)  

Vlq=~ = v(O+, t). (13 )  

A difference from [12] is that here the velocity at the bottom of the chamber is not zero 
and is governed by the rate of extrusion into the guide. 

We substitute for 8v/Sq from (8) into (i0) and use (9) and (12) to get the consolida- 
tion rate: 

Op 3 P 1 - - p  

Ot 4 ~1 P~-~ (14)  

A similar equation has been derived [12] for consolidation in a closed chamber, but there 
was a difference in that the Lagrange coordinate q was taken in the form of (6) and the range 
was different, which varied with time. The characteristic consolidation time is t, = 
4Di/3P, and (14) can be rewritten as 

i p"-~ t dp .... l--p ~.~ (i5) 

There is no difficulty in calculating 

? �9 ]---~m - I 
j d,o. 

O0 

One can  expand  t h e  i n t e g r a n d  a s  a T a y l o r  s e r i e s ,  wh ich  c o n v e r g e s  r a p i d l y  f o r  low v a l u e s  o f  
t h e  p o r o s i t y  (H = 1 - p << 1 ) ,  and c a l c u l a t e  J ( p )  a p p r o x i m a t e l y  o r  d e r i v e  an a n a l y t i c  e x p r e s -  

s i o n  f o r  i n t e g e r  m. One t h u s  g e t s  p ( q ,  t )  in  t h e  chamber  f o r  P t  _< q <_ q0. 

We now d e r i v e  t h e  v e l o c i t y  d i s t r i b u t i o n  in  t h e  chamber .  E q u a t i o n  (10)  w i t h  (12)  g i v e s  

4 p,n+l Ov 
~ - ~ l l _ _ p  aq P' 

We i n t e g r a t e  t h i s  w i t h  (13)  a t  t h e  l ower  end o f  t h e  chamber  (q = P t ) ,  t o  g e t  

v(q,t)=v~t, 0 - ~  p"+t 
" H! - 

He re  v ( P t ,  t )  means  t h e  v e l o c i t y  o f  t h e  m a t e r i a l  f o r  t h e  C a r t e s i a n  c o o r d i n a t e  z = O+ b e f o r e  
e x t r u s i o n ,  f o r  wh ich  (5 )  a p p l i e s ,  which  c o n t a i n s  t h e  d e n s i t y  in  t h e  h o l e  P[z=0 = 

p ( P t ,  t ) ,  wh ich  i s  d e r i v e d  f r o m  (15 )  w i t h  q = P t .  

Density and Velocity Distributions in Guide. There is no ongoing consolidation in the 

guide on these assumptions, so in the region 0 <_ q <_ Pt, corresponding to the guide, the 
density is not a function of time and is dependent only on q. Each volume with coordinate 
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q passes through z = 0 at time t = q/P, and attains its limiting density, with the further 
displacement along the guide not involving any more consolidation. The density distribu- 

tion in the guide is derived from (15) with t = q/P, in which 0 <_ q <_ Pt. When one deter- 
mines the speed of the extruded material, the above assumptions imply that there is no 
resistance to the motion in the guide: the friction in the guide is negligible and the stress 
at the free surface is zero, i.e., at z =-L(t):Ozz = 0, which corresponds to the situation 
most often found with self-propagating synthesis extrusion for refractory materials, where 
the consolidation is largely completed in the chamber and the extrusion is that of a rigid 
material into air or into the guide, whose diameter is greater than that of the extruded 
rod. The rod moves with a variable velocity vL(t), which is determined by the velocity of 
the individual volume present in the hole at time t. The velocity in the guide is indepen- 

dent of q and is governed by the extrusion rate v(~t, t)S0/Sl, whose determination procedure 
has already been described. 

Particular Case m = I. A qualitative analysis may be based on taking this case sep- 
arately, which corresponds to a linear relation between the shear viscosity and the density. 
Equation (15) gives the density distribution in the chamber: 

9(q, z ~) = 1 - - (1 - -oo(q ) )exp( - - l / t . ) ,  Pl~ct<~qo. (17)  

The density in the hole is given by (17) with q = PL: 

9 (Pt, t) - 1-- (1--9o (Pt)) exp (--l/t.). (18)  

We substitute for p(q, t) from (17) into (16) to get the velocity distribution. If the 
porosity is low, the velocity is approximately 

k exp i' ri0 (q) dq. (19)  v (q ,  ~) --  v ( > 4  t) - -  t ,  ~ t  

From ( 1 8 ) ,  we have  t h e  d e n s i t y  in  t h e  h o l e ,  and from (5)  we g e t  t h e  v e l o c i t y  t h e r e :  

v(PL t) P 1 (I 90(Pt))exp . . . .  , - -  - -  , ( 2 0 )  

w h i l e  t h e  speed  V o f  t h e  p i s t o n  i s  d e f i n e d  by (19)  w i t h  q = qo and from (20)  i s  p u t  as  

g = - - g  1 - - ( 1 - -  Oo(Pt))exp -- t -~ . Fio(q) dq. 
t, >t (21 )  

We then determine the characteristics in the guide. The density in the extruded part 
of the material is found from (17) by putting t = q/P: 

/ q 
) ,  q ~ i o ,  P t l .  P ( q ) =  1- ( 1 - -  go (q)) e• ( 
! 

The material in the guide moves as a solid, so its velocity VL(t) is defined as -dL/dt and 
corresponds to the (19) velocity multiplied by the area ratio (S0/Si). Then the length of 
the extruded part is 

- - L ( t ) =  2VL(t)dt=--P t 1 - - ( 1 - - O o ( P t ) ) e x p  /---77-j  dr. (22)  
o b L ' ~ J 

From (19) and (22) we get that the length and velocity of the extruded part are dependent 

only on P, which governs the hole resistance, and on the characteristic consilidation time 
t,, which simplifies the inverse determination of the viscosity Di or the parameters k, n, 

Si/S0, governing the hole resistance from measurements of L(t) or vL(t). 

Sometimes, t, has a negligible effect, e.g., if the extrusion time t e is sufficiently 
large by comparison with t,(t e >> t,), when (20) gives v L = -P. The speed V from (21) also 

tends to -P. In essence, t e ~ t, defines the condition for quasistationary extrusion, in 
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p-I I a p. 

0,9 ] ~ --.-~-~~-t ~ : t  ~ 0,9- 
�9 --~-- ~.~L- --I 

0,7J / ,  - -  1 t  .--- f f  ~ -[ = 0,7- 

qs ~ ., , . . . . .  o,5 ~ 
o o,s 1,o f/~o 

I 

I I 

Fig. 2. Distribution of p in q as a function of: a) time 
(i chamber, 2 rod, 3 boundary position); b) P (i, P = 
0.025; 2, 0.25). 

which the density does not vary in time (Sp/St = 0), and the mass flow rate is the same in 
all cross sections: pV = const. For quasistationary conditions with low porosity, (22) 

gives L(t) = Pt, which simplifies determining the parameters appearing in the hole resis- 
tance. 

Result Analysis. 
the start is linear: 

We assume that the density as a function of the mass coordinate at 

po (q) -- po + (p~.--po) qlqo. (23) 

If the actual distribution differs from (23), the latter can be considered as a linear in- 

('--'~ 1 terpolation for it. In Cartesian coordinates, (23) is p0(z) = P0exp q0 z/. 

Figure 2a shows p(q, t) in the chamber (dashed lines) and in the guide (solid line) 
for various times with the following parameters: P = 108 Pa, P0 = 0.5, Pm = 0.7, S0/S l = 
36, q0 = 4"10-2 m. The points * on the q axis and on the p(q) curves correspond to the posi- 

tions of the time-varying boundary (mass coordinate q = Pt) separating the chamber and 
the guide. 

One usually tends to meet the following two conditions during extrusion: i) there is 
only a low density gradient along the extruded part, and 2) the density of much of the ex- 
truded rod is close to one, i.e., the specimen is substantially compacted. 

Then Fig. 2b shows a good density distribution (curve i) and a poor one (curve 2)~ The 
density variation for curve 1 occurs in a small part of the extruded rod (the mass of that 
part is less than 10% of the total), while the density throughout the rest is almost iden- 
tical at 0.99 of the density for the incompressible matrix. For curve 2, the density is 
uniformly distributed along the length and the limiting density is only 0.86 of the density 
of the incompressible matrix. The initial density variation in these two cases is the same 

at 0.2, and the cases differ only in P, which for the first curve is 0.025 and for the 
second is 0.25. 

//, 

i/ 

I/ 

/ I  

/ /  

/ /  
/ /  
/ /  

Z a 

Y 

-L 
I 

b 

0 
F 

Fig. 3. Effects of initial density variation on the density distribution 
in the rod: a) Ap = 0.2, P0 = 0.5, Pm = 0.7; b) Ap = 0.2, P0 = 0.7, Pm = 0.5. 
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Fig. 4. Limiting density Pmax as a func- 
tion of K. 

It has been found [ii, 12] that initial density variation has little effect on the final 
consolidation. This is due to density self-equalization. The density differences have a 
different effect on the extrusion. For a given difference in the initial distribution 
Ap = IPm - P01 = 0.2 but differing positions for the material (straight and reversed), one 
gets differing density distributions in the extruded material (Fig. 3a and b, correspond- 
ingly). One can say that for a given density difference, it is more favorable to have the 
bottom denser than the top (Fig. 3b). The reverse position leads to a substantial increase 
in the initial density difference (by a factor of two), while the density difference in the 
rod is reduced with the tablet reversed. 

The basic dimensionless parameters governing the consolidation and extrusion are < = 
te/t,, which characterizes the ratio of the extrusion time t e and consolidation time t,, 

and P, which characterizes the slot resistance (p = kpnsz/S0pi). Figure 4 shows the limit- 

ing density Pmax as a function of K. It is monotone: for low K(K S i), the specimen is 
extruded without consolidation, and Pmax < 0.86 for K = 5, while the relative limiting den- 

sity is close to one, and with K > 5, there is merely an increase in the extrusion time 
without effect on the limiting density. 

NOTATION 

t, time; r and z, transverse and longitudinal coordinates; r 0 and H 0 tablet radius and 
height; r i, hole radius; v, flow velocity; Pi and Di, density and viscosity of incompres- 
sible matrix; p, relative density of material; D and g, shear and bulk viscosities of ma- 
terial; Orr, o08, Ozz, radial, tangential, and axial stresses; S o and S i, cross-sectional 

area of chamber and guide; P = Sikpn/s0Pi, flow speed in hole; P, force on plunger; q0 = 
HU) 
.f p(Z, t)dz + Pt, relative tablet mass; L(t) and H(t) time dependence of rod length and 
O 

tablet height; P0 and Pm, densities of material in hole and at piston correspondingly at the 
initial instant; K, dimensionless parameter, ratio of the characteristic consolidation and 
extrusion times; and t e and tc, characteristic extrusion and consolidation times, 
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EQUIVALENCE OF FORMULATIONS OF PROBLEMS WHEN MODELING FLOWS OF 

RHEOLOGICALLY COMPLEX MEDIA IN SCREW-SHAPED CHANNELS 

Yu. G. Nazmeev UDC 536.24 

The equivalence of two formulations of problems concerning the flow of a 
Newtonian liquid in a screw-shaped channel of an extruder - direct and inverse 
(rotation of jacket) - is analyzed. 

The problem of the motion of a liquid in the screw-shaped channel of an extrusion 
machine is traditionally formulated as an inverse problem. In this formulation the screw 
is stationary and the casing rotates, and the problem is ultimately reduced to flow in a 
rectangular channel whose upper wall moves at an angle with respect to the longitudinal 
axis [i-3]. 

A different, direct formulation of the problem is also possible [4]. In this formu- 
lation the screw rotates and the casing is stationary. The solution of the problem in this 
case is obtained with the help of spiral coordinates: introduced in a different manner. An 
example of such a formulation is given in [5]. 

Since the problem of accurate calculation of extruders (on which, by the way, there 
are many papers and monographs) is important, it is useful to study the relation between 
the two approaches to modeling. 

When analyzing the direct formulation it should first be noted that in both [4] and 
[5] nonorthogonal spiral coordinate systems are introduced. In [6] it is proved that the 
velocity vector is self-similar relative to the third (spiral) coordinate. We first show 
that it is impossible to introduce orthogonal coordinates in which the spiral displacement 
is transformed into a translation of the coordinate. 

Let S~:R ~ + R s be a spiral displacement by an angle a (if the axis of the screw is 
taken as the Oz axis and the Ox and Oy axes are chosen to be orthogonal to the Oz axis, then 
this transformation has the form: x § xcosa - ysin ~, y § xsin ~ + ycos ~, z ~ z + 7~). The 
trajectory of a point M is the curve {S~M}_=<~<~ - the spiral line. We shall show that in 
a neighborhood of the point M it is possible to introduce an orthogoanl coordinate system 
so that the trajectories of the points in a neighborhood of M would be coordinate lines. 

For this we show that there does not exist a surface orthogonal to the spiral lines 
in a neighborhood of the point M. This is an obvious consequence of Frobenius's theorem 
[7]. Here we shall give a direct proof. 

We write the parametric equations of the spiral line passing through the point (x ~ 
y0, z 0) as follows: 

x = x ~ cos  ~ - -  y ~ s in  a ,  x (0) = x ~ 

y = x  ~ 1 7 6  --~ <a<~, y ( O ) = y ~  

z = z ~ + ~ ,  z ( 0 )  = z ~ 

Kazan' Affiliate, Moscow Power Engineering Institute. Translated from Inzhenerno- 
fizicheskii Zhurnal, Vol. 61, No. 2, pp. 277-283, August, 1991. Original artical submitted 
November 27, 1989. 
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